Total Synthesis of (\pm) -Batrachotoxinin A

Michio Kurosu, Lawrence R. Marcin, Timothy J. Grinsteiner, and Yoshito Kishi*

> Department of Chemistry and Chemical Biology Harvard University, Cambridge, Massachusetts 02138

> > Received April 14, 1998

The batrachotoxins are a unique class of steroidal alkaloids isolated in minute quantities from the skins of poison arrow frogs (genus *Phyllobates*)¹ as well as from the feathers of a New Guinea bird (genus *Pitohui*).² The structures of batrachotoxinin A (1)and batrachotoxin (2) were unambiguously determined through X-ray analysis³ and chemical correlation,⁴ respectively. The

batrachotoxins exhibit a number of unique structural features, including a steroid-based pentacyclic core skeleton, an intramolecular 3β -hemiketal, and a seven-membered oxazapane ring. These compounds are extremely potent neurotoxins (batrachotoxin, LD_{50} in mice 2 μ g/kg) that act as selective and irreversible Na⁺-channel activators.⁵

A partial synthesis of (-)-batrachotoxinin A from (+)progestrone was accomplished in 1972 by Imhof and co-workers,⁶ while several synthetic efforts toward the ABC ring system have been recorded.⁷ In this paper, we report the first total synthesis of (\pm) -batrachotoxinin A, which also constitutes a formal total synthesis of (\pm) -batrachotoxin.⁴ Strategic bond-forming events include an intramolecular furan Diels-Alder reaction8 to assemble the steroidal skeleton, an intramolecular oxy-Michael reaction⁹ to close the oxazapane ring,¹⁰ and an organocerium addition to form the C20-C21 bond.¹¹

Employing the method of Garst and Spencer,¹² the (\pm) -cisdecalone 3^{13} was transformed into the fused-furan 4 (Scheme 1). This intermediate was elaborated in a regioselective fashion to

(1) (a) Märki, F.; Witkop, B. Experientia 1963, 19, 329. (b) Daly, J. W.; Witkop, B.; Bommer, P.; Biemann, K. J. Am. Chem. Soc. 1965, 87, 124. (c) Tokuyama, T.; Daly, J. W. Tetrahedron 1983, 39, 41.

(2) Dumbacher, J. P.; Beehler, B. M.; Spande, T. F.; Garraffo, H. M.; Daly, J. W. Science 1992, 258, 799.

(3) (a) Tokuyama, T.; Daly, J.; Witkop, B.; Karle, I. L.; Karle, J. J. Am. Chem. Soc. **1968**, 90, 1917. (b) Karle, I. L.; Karle, J. Acta Crystallogr. **1969**, B25, 428. (c) Gilardi, R. D. Acta Crystallogr. 1970, B26, 440.

(4) Tokuyama, T.; Daly, J.; Witkop, B. J. Am. Chem. Soc. 1969, 91, 3931.

(5) Albuquerque, E. X.; Daly, J. W.; Witkop, B. Science 1971, 172, 995.

(6) (a) Imhof, R.; Gössinger, E.; Graf, W.; Berner, H.; Berner-Fenz, L.; Wehrli, H. *Helv. Chim. Acta* **1972**, *55*, 1151. (b) Imhof, R.; Gössinger, E.; Graf, W.; Berner-Fenz, L.; Berner, H.; Schaufelberger, R.; Wehrli, H. Helv. Chim. Acta 1973, 56, 139.

(7) (a) Keana, J. F. W.; Schumaker, R. R. J. Org. Chem. 1976, 41, 3840.
(b) Magnus, P.; Leapheart, T.; Walker, C. J. Chem. Soc., Chem. Commun. 1985, 1185.
(c) Hudson, P.; Pairaudeau, G.; Parsons, P. J.; Jahans, A. W.; Drew, M. G. B. Tetrahedron Lett. 1993, 34, 7295.

(8) For a recent review of furan Diels-Alder chemistry, see: Kappe, C. O.; Murphree, S. S.; Padwa, A. Tetrahedron 1997, 53, 14179.

(9) For a recent review of oxy-Michael reactions, see: Little, R. D.; Masjedizadeh, M. R.; Wallquist, O.; McLoughlin, J. I. Org. React. **1995**, 47, 315

(10) (a) Grinsteiner, T. J.; Kishi, Y. *Tetrahedron Lett.* **1994**, *35*, 8333. (b) Grinsteiner, T. J.; Kishi, Y. *Tetrahedron Lett.* **1994**, *35*, 8337.
(11) Kurosu, M.; Kishi, Y. *Tetrahedron Lett.* In press.

(12) Garst, M. E.; Spencer, T. A. J. Am. Chem. Soc. 1973, 95, 250.

(13) Decalone 3 was prepared from (\pm) -Weiland-Miescher diketone; see the Supporting Information for details.

Scheme 1^a

^a Reagents and yields: (a) (i) ethyl formate, NaH; (ii) n-BuSH, TsOH (88%); (iii) Me₃SI, NaHMDS;¹² (iv) HgCl₂ (54%); (b) (i) DMF, (COCl)₂ (84%); (ii) KOt-Bu, CH₃OCH₂P(Ph)₃Cl; (iii) 1,3-propanedithiol, CSA (72%); (c) (i) t-BuLi, HMPA, 2-(bromomethyl)-1-(tert-butyldimethylsilyloxy)-2-propene; (ii) TBAF (52%).

Scheme 2

provide the corresponding 1,3-dithiane 5. In two additional steps, the dithiane was alkylated and selectively deprotected to afford the Diels-Alder precursor 6.

Using MnO₂ in dichloromethane, the allylic alcohol **6a** was cleanly oxidized to the corresponding enal, which smoothly underwent intramolecular [4 + 2] cycloaddition (Scheme 2). Without purification, the cycloadduct was directly subjected to reductive amination and then acetylation to afford a single diastereomer 7a in 70-75% yield. Interestingly, we have discovered that the selectivity of the Diels-Alder reaction is dramatically influenced by the C6 substituent. In fact, a C6 deoxy analogue (6b) provided the corresponding cycloadduct in only **7b:8b** 3–4:1 diastereoselectivity,¹⁴ while the C6 β -OMPM derivative **6c** underwent [4 + 2] cycloaddition in a poor (**7c:8c** 3:2) selectivity. The structures of 7 and 8 were determined through X-ray analysis and/or extensive NMR studies, establishing that both 7 and 8 result from endo-mode transition states in the Diels-Alder reaction.

Through NOE experiments, we have ascertained that 6a exists in a single chair-chair conformer A,¹⁵ while 6c predominantly adopts the alternative chair-chair conformer B (Figure 1). In both cases, the C6 substituent occupies a favorable equatorial position. In contrast, 6b exists as a mixture of conformers A and **B**. For the endo-mode [4 + 2] cycloaddition of **6a**, an α -face approach of the dienophile to the furan is effectively shielded (cf. Newman projection of conformer A), whereas in the endomode cycloaddition of **6c**, both the α - and β -face approaches are sterically accessible (cf. Newman projection of conformer B).

⁽¹⁴⁾ Previously, we reported that substrate 6b undergoes an intramolecular [4 + 2] cycloaddition in the presence of Me₃Al at -78 °C to afford an 8:1 ratio of diasteromers (see ref 10a). However, these optimized conditions were not compatible with the subsequent reductive amination.

⁽¹⁵⁾ The A ring of conformer A might be somewhat distorted with the C3 OTBS group turning away from the axial position to relieve considerable 1,3diaxial interations, thereby providing more steric shielding of the α -face approach in the [4 + 2] cycloaddition.

Scheme 3^a

^{*a*} Reagents and yields: (a) (i) $(CF_3CO_2)_2IC_6H_5$,²² CaCO₃, MeOH; (ii) PPTS, acetone; (iii) DBU (68%); (b) (i) *p*-nitroperoxybenzoic acid (90%); (i) MOMCl, DIEA (93%); (c) (i) KHMDS, Davis' oxaziridine²³ (93%); (i) TFAA, DMSO, TEA (88%); (d) (i) $(Me_2N)_3S(Me_3SiF_2)$;¹⁷ (ii) PhNTf₂, TEA (95%); (e) (i) PtO₂, H₂, 2,6-di-*tert*-butylpyridine (90%);¹⁸ (ii) NaBH₄; (iii) TBAF; (iv) Dess-Martin oxidant; (f) (i) DBU; (ii) CSA, MeOH (85%); (g) (i) NaBH₄, CeCl₃; (ii) 2,2'-dipyridyl disulfide, (*n*-Bu)₃P; (h) (i) W-2 Raney Ni, H₂; (ii) Dess-Martin oxidant²⁰ (73%); (i) (i) KHMDS, PhNTf₂; (90%); (ii) Pd(PPh₃)₄, CO, morpholine (96%);²¹ (j) (i) CeCl₃, MeLi;¹¹ (ii) NaHCO₃, MeI (80%); (k) (i) Zn(BH₄)₂ (80%); (ii) *p*-TsOH, wet acetone (83%).

Cycloadduct **7a** was readily transformed into the corresponding dienone **9** after dithiane deprotection and base treatment (Scheme 3). Subsequently, the allylic alcohol was subjected to a hydroxyl-directed epoxidation to provide, after protection, the epoxy enone **10** in good yield. The enone **10** was then converted into the corresponding α -keto enone **11** using standard methods.

In a previous report, we had noted that incorporation of a C15 carbomethoxy ester was necessary in order to effect an oxy-Michael addition.^{10b} Now, we report that the α -keto enone **11** is

also a suitable substrate for this reaction.¹⁶ Furthermore, this modified approach facilitates C17 functionalization for installation of the requisite hydroxyethyl side chain. In the event, deprotection of the primary silyl ether using TASF,¹⁷ followed by trapping with PhNTf₂, afforded the desired Michael-adduct **12** in 95% yield. Hydrogenolysis of the enol triflate could be achieved using platinum oxide and hydrogen to provide,¹⁸ after further manipulations, triketone **13** in good yield.

Originally, we had envisioned installing the C7–C8 olefin through ring-opening of a C8–C9 tetrasubstituted epoxide.¹⁹ Unfortunately, this strategy was not successful, presumably due to considerable steric constraints on the α -face around C7–C9. Thus, we chose to slightly modify our original route to include a C6 ketone that could be used to facilitate deprotonation of the C7 position. Indeed, epoxide opening and ketal formation to provide **14** could be smoothly accomplished in two steps from **13**. Removal of the C6 ketone was then achieved through a Luche reduction, selective C6 pyridylthioether formation, Raney nickel desulfurization, and Dess–Martin oxidation.²⁰ The structure of intermediate **16** was secured through X-ray analysis.

The remaining challenge was incorporation of the requisite C17 hydroxyethyl side chain. Two approaches to accomplish this task could be imagined: (1) nucleophilic additions to the C17 ketone and (2) metal-catalyzed couplings of the C17 enol triflate. Considering the sterically encumbered environment of this ketone as well as the somewhat electrophilic nature of the *N*-acetyl group, we pursued the second approach. Thus, the enol triflate of ketone **16** underwent palladium-catalyzed carbonylation²¹ in the presence of morpholine to afford amide **17** in 96% yield. This amide was readily converted to the desired methyl ketone, and the *N*-acetyl protecting group was simultaneously removed upon reaction with an excess of freshly prepared "MeCeCl₂".¹¹ Subsequent methylation of the secondary amine provided intermediate **18** in 80% overall yield.

After an extensive survey of reducing agents, it was discovered that the α -enone could be selectively reduced using zinc borohydride in diethyl ether to provide the desired allylic alcohol as a 5:1 mixture of diastereomers. Finally, acidic deprotection furnished (±)-batrachotoxinin A (1). The synthetic material was determined by ¹H NMR, MS, and TLC to be identical to a sample of natural 1.²⁴ Since the chemical transformation of (-)-1 into (+)-2 is known,⁴ this synthesis constitutes a formal total synthesis of (±)-batrachotoxin.

Acknowledgment. We are grateful to the National Institutes of Health for generous financial support (NS 12108). L.R.M. also thanks the National Cancer Institute for a postdoctoral fellowship (5 F32 CA72230).

Supporting Information Available: Complete experimental details including characterization for all new compounds (19 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA981258G

- (19) For a review, see: Smith, J. G. Synthesis **1984**, 629.
- (20) Dess, D. B.; Martin, J. C. J. Org. Chem. **1983**, 48, 4155

(24) A sample of natural batrachotoxinin A was graciously provided by Dr. J. Daly of the National Institutes of Health.

⁽¹⁶⁾ The C17-ketone group not only activates the β -position of the enone but also stabilizes the enolate of the oxy-Michael adduct. Deprotection of the primary TBS group in **11** using HF·pyr gave the seven-membered hemiketal between the primary alcohol and the C17 ketone. Under basic conditions, this isolable product smoothly underwent the oxy-Michael cyclization.

 ⁽¹⁷⁾ Noyori, R.; Nishida, İ.; Sakata, J. J. Am. Chem. Soc. 1983, 105, 1598.
 (18) Jigajinni, V. B.; Wightman, R. H. Tetrahedron Lett. 1982, 23, 117.

⁽²¹⁾ Cacchi, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1985, 26, 1109.

⁽²²⁾ Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287.

⁽²³⁾ Davis, F. A.; Vishwakarma, L. C.; Billmers, J. M.; Finn, J. J. Org. Chem. 1984, 49, 3241.